
A Comparison of the Object-Oriented Features of Ada 95 and Java

Benjamin M. Brosgol
Ada Core Technologies

79 Tobey Road
Belmont, MA 02478

+1.617.489.4027 (Phone)
+1.617.489.4009 (FAX)

brosgol@gnat.com (Internet)

Abstract
Ada and Java offer comparable Object-Oriented Programming (“OOP”) support, but through quite different
approaches in both their general philosophies and their specific features. Each language allows the programmer
to define class inheritance hierarchies and to exploit encapsulation, polymorphism, and dynamic binding.
Whereas OOP forms the foundation of Java’s semantic model, OOP in Ada is largely orthogonal to the rest of the
language. In Java it is difficult to avoid using OOP; in Ada OOP is brought in only when explicitly indicated in
the program. Java is a “pure” OO language in the style of Smalltalk, with implicit pointers and implementation-
supplied garbage collection. Ada is a methodology-neutral OO language in the manner of C++ , with explicit
pointers and, in general, programmer-controlled versus implementation-supplied storage reclamation. Java uses
OOP to capture the functionality of generics (“templates”), exception handling, multi-threading and other
facilities that are not necessarily related to object orientation. Ada supplies specific features for generics,
exceptions, and tasking, independent of its OO model. Java tends to provide greater flexibility with dynamic data
structures and a more traditional notation for OOP. Ada tends to offer more opportunities for optimization and
run-time efficiency, and greater flexibility in the choice of programming styles.

1 Introduction
Ada [In95] and Java [GJS96] both offer comprehensive support for Object-Oriented software development, but
through rather different approaches and, perhaps confusingly, at times using the same terms or syntactic forms
with different meanings. Since both languages promise to see significantly expanded usage over the coming
years, software developers should know how the languages compare, both in general and with respect to their OO
features. This paper focuses on the latter point, contrasting the two languages’ OO facilities from the
perspectives of semantics, expressiveness/style, and efficiency. It roughly follows the approach of an earlier
paper by J. Jørgensen [Jø93] that compares Ada and C++, and it supplements the results presented by S.T. Taft
[Ta96]. The reader is assumed to be familiar with Ada but not necessarily with Java.

Section 2 summarizes that main features of Java. Section 3 describes how Java and Ada capture the essential
concepts of “class” and “object” and how they treat encapsulation and modularization. Section 4 compares the
languages’ approaches to inheritance, and Section 5 summarizes the differences in their treatment of overloading,
polymorphism and dynamic binding. Section 6 describes how Java and Ada provide control over a class’s
fundamental operations including initialization and finalization. Sections 7 and 8 respectively compare the
languages’ facilities for exception handling and multi-threading, both of which are defined in Java through OO
features. Section 9 looks more generally at how OOP fits into the two languages, and Section 10 offers some
conclusions and provides a summary comparison table.

As a comparison of the two languages, this paper frequently will present a feature of one language and show how
it can be modeled in the other. A benefit of this approach is that it eases the task of describing the relative

 Permission to make digital/hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notics, the title of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and.or a fee. ©
1997 ACM 0-89791-981-5/97/0011 3.50

This paper was presented at the TRI-Ada ’97 Conference in St.Louis, MO (Nov. 1997) while the author was with Aonix.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 2

semantics. However, an acknowledged drawback is that the reader may infer that we recommend the “modeling”
approach as the way to actually develop software. This in not our intent; each language has its own natural style
or styles, and trying to imitate Java by translating its features into equivalent Ada, or vice versa, is not
encouraged. Moreover, whether a particular feature of one language has a direct analog in the other is generally
not the issue that is relevant in practice. The question is how the totality of a language’s features fit together to
enable reliable and robust software development.

2 Java Summary
Although it is beyond the scope of this paper to describe Java in detail, this section provides an overview of the
Java technology and the basic language features. Among the references for further information on Java are
[Fl97], [AG98], and [GJS96].

2.1 Java Technology Elements

Sun [Su96] has described Java as a “simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, and dynamic language”. This is an impressive
string of buzzwords – Flanagan [Fl97, pp. 3ff] summarizes how Java complies with these goals – but it is useful
to distinguish among three elements:

• The Java language

• The predefined Java class library

• The Java execution platform, also known as the Java Virtual Machine or simply JVM.

In brief, Java is an Object-Oriented language with features for objects/classes, encapsulation, inheritance,
polymorphism, and dynamic binding. Its surface syntax has a strong C and C++ accent: for example, the names
of the primitive types and the forms for the control structures are based heavily on these languages. However, the
OO model is more closely related to so-called “pure” OO languages such as Smalltalk and Eiffel. Java directly
supports single inheritance and also offers a partial form of multiple inheritance through a feature known as an
“interface”.

A key property of Java is that objects are manipulated indirectly, through implicit references to explicitly
allocated storage. The JVM implementation performs automatic garbage collection, as a background thread.

One can use Java to write stand-alone programs, known as applications, in much the same way that one would
use Ada, C++, or other languages. Additionally, and a major reason for the attention that Java is currently
attracting, one can use Java to write applets – components that are referenced from HTML pages, possibly
downloaded over the Internet, and executed by a browser or applet viewer on a client machine.

Supplementing the language features is a comprehensive set of predefined classes. Some support general purpose
programming: for example, there are classes that deal with string handling, I/O, and numerics. Others, such as
the Abstract Windowing Toolkit, deal with Graphical User Interfaces. Still others, introduced in Java 1.1,
support specialized areas including distributed component development, security, and database connectivity.

There is nothing intrinsic about the Java language that prevents a compiler from translating a source program into
a native object module for the target environment, just like a compiler for a traditional language. However, it is
more typical at present for a Java compiler to generate a so-called class file instead: a sequence of instructions,
known as “bytecodes”, that are executed by a Java Virtual Machine. This facility is especially important for
downloading and running applets over the Internet, since the client machine running a Web browser might be
different from the server machine from which the applet is retrieved. Obviously security is an issue, which is
addressed through several mechanisms, including:

• Restrictions in the Java language that prevent potentially insecure operations such as pointer manipulation

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 3

• The implementation of the JVM, which performs a load-time analysis of the class file to ensure that it has not
been compromised

• The implementation of the browser or applet viewer, which checks that a downloaded applet does not invoke
methods that access the client machine’s file system

2.2 Language Overview

2.2.1 General-purpose features

At one level Java can be regarded as a general-purpose programming language with traditional support for
software development. Its features in this area include the following:

• simple control structures heavily resembling those found in C and C++

• a set of primitive data types for manipulating numeric, logical, and character data

• a facility for constructing dynamically allocated linear indexable data structures (arrays)

• a facility for code modularization (“methods”)

• limited block structure, allowing the declaration of variables, but not methods, local to a method

• exception handling

The primitive data types in Java are boolean, char, byte, short, int, long, float, and double. Java
is distinctive in specifying the exact sizes and properties of these primitive types. For example, an int is a 2’s
complement 32-bit quantity, with “wrap around” when an operation overflows. The floating-point types are
defined with IEEE-754 semantics [AI85], implying that results and operands may be signed zeroes, signed
infinities, and NaN (“Not a Number”). Unlike Ada, Java does not allow range constraints to be specified for
variables from numeric types.

Java’s char type is 16-bit Unicode. Its source representation is likewise based on Unicode, although external
files may be stored in 8-bit format with conversion on the fly during file loading. Like C and C++ but unlike
Ada, Java’s treatment of identifiers is case sensitive.

Java lacks a number of data structuring facilities found in traditional languages:

• enumeration types

• heterogeneous data structures (records / structs)

• conditional data structures (variant records / unions)

An enumeration type can be simulated by constants (static “final” variables), a record/struct can be modeled by a
class, and a variant record/union can be modeled by an inheritance hierarchy.

Significantly, Java also lacks an explicit pointer facility, a restriction motivated by security concerns. As a
consequence, it is not possible to obtain a pointer to a method, functionality that languages like Ada and C/C++
provide for “callbacks” in GUI programming. We show below (§4.3) how to work around this omission.

Interfacing with non-Java code is provided through methods that are specified as native. The implementation of a
native method is supplied by platform-dependent foreign code.

2.2.2 Execution model and multi-threading

Java’s execution model is based on a run-time stack (more generally, one stack per created thread). When a
method is called, its parameters and local variables are stored on the (calling thread’s) stack. For a parameter or
variable of a primitive type, the stack contains the variable’s value directly. In all other cases the stack contains a
reference that can designate an allocated object of the item’s type. Parameter passing is thus always “call by
value”, with the value of the actual parameter copied to the formal parameter at the point of call. However, since

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 4

objects are represented indirectly, the effect is to copy a reference and thus the formal and actual parameters refer
to the same object.

Java offers built-in support for multi-threaded programs, with user-definable threads that can communicate
through objects whose methods are explicitly marked as synchronized. An object that contains synchronized
methods has a “lock” that enforces mutually exclusive access, with calling threads suspended waiting for the lock
as long as any synchronized method is being executed by some other thread. As will be discussed below (§8),
the thread model is based on Java’s OOP features.

2.2.3 “Programming in the large”

Java offers a variety of support for developing large systems. It provides a full complement of Object-Oriented
features, with precise control over the accessibility of member names (that is, control over encapsulation) as will
be detailed below.

The unit of program composition is the class, but this raises the problem of “namespace pollution” as large
numbers of classes are developed. Java solves this in two ways. First, classes may be nested, a facility
introduced in the Java 1.1 release. Thus a class may declare other classes as members; since the inner classes are
referenced using “dot” notation, their names do not conflict with any other classes. Second, Java provides a
namespace management feature, the package, as a repository for classes. Despite the similarity of names, the
term “package” has different meanings in Ada and Java. An Ada package is a syntactic and semantic construct, a
compilable unit. In contrast, a Java package is an open-ended host-environment facility, generally a directory,
which contains compiled class files. Java supplies an explicit construct, the package statement, which allows
the programmer to identify the target package for the classes being compiled. If a source file does not supply an
explicit package statement, then its classes go into an “unnamed” package, by default the same directory as the
site of the .java file.

Java’s predefined environment is structured as a collection of packages, including java.lang, java.util, and
many others. If a Java program explicitly imports a class or package, then it can access that class, or any class in
the given package, by the class’s “simple name” without the package name as qualifier. The general-purpose
package java.lang is implicitly imported by every Java program, and its classes (such as String) are therefore
automatically accessible without the package name as prefix.

Like Ada, but unlike C and C++, Java does not supply a preprocessor. Higher level and better-structured
mechanisms provide the needed functionality more reliably than preprocessor directives.†

Java does not include a facility for generic units (“templates” as they would be known in C++). Some of this
functionality can be approximated in Java through use of the “root” class Object defined in package
java.lang, but with much less compile-time protection than with Ada generics.

2.3 Java Application Example

To introduce the basic language constructs, here is a simple Java application that displays its command-line
arguments:

class DisplayArgs{
 static int numArgs;
 public static void main(String[] args){
 numArgs = args.length;
 for (int j=0; j < numArgs; j++) {
 System.out.println(args[j]);

† K. Arnold has noted [Ar96] that in C++ a programmer wanting to reference private members of a class can
subvert the language rules by simply including the preprocessor directive

#define private public

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 5

 } // end for
 } // end main
} //end DisplayArgs

The class is the unit of compilation in Java, and is also a data type; here it is only the compilation unit property that is being exploited. A

class declares a set of members: in this example the class DisplayArgs has two members, a field named numArgs of type int, and a
method named main.

The field numArgs is declared static, implying that there is a single copy of the data item regardless of the
number of instances of its enclosing class.

The method main takes one parameter, args, an array of String objects. It does not return a value (thus the
keyword void) and is invokable independent of the number of instances of its enclosing class (thus the keyword
static). The public modifier implies that the method name may be referenced anywhere that its enclosing class
is accessible.

There is special significance to a method named main that is declared public and static, and that takes a
String array as parameter and returns void as its result. Such a method is known as a class’s “main method.”
When a class is specified on the command line to the Java interpreter, its main method is invoked automatically
when the class is loaded, and any arguments furnished on the command line are passed in the args array. For
example if the user invokes the application as follows:

java DisplayArgs Brave new world

then args[0] is "Brave", args[1] is "new", and args[2] is "world". Similar to C and C++, the initial element
in an array is at position 0. Since the number of elements in an array is given by the array’s length field, the
range of valid indexes for an array x goes from 0 to x.length-1. Unlike C and C++, an array is not synonymous
with a pointer to its initial element, and in fact there is a run-time check to ensure that the value of an index
expression is within range. If not, an exception is thrown.

The class String is defined in the java.lang package. A variable of type String is a reference to a String
object, and a string literal such as "Brave" is actually a reference to a sequence of char values; recall that char is
a 16-bit type reflecting the Unicode character set. There is no notion of a “nul” character terminating a String
value; instead, there is a method length() that can be applied to a String variable to determine the number of
char values that it contains. String variable assignment results in sharing, but there are no methods that can
modify the contents of a String. To deal with “mutable” strings, the class StringBuffer may be used.

The Ada and Java String types are thus quite different. In Ada, a String is a sequence of 8-bit Character
values, and declaring a String requires specifying the bounds either explicitly through an index constraint or
implicitly through an initialization expression; further, in an array of String values each element must have the
same bounds. In Java a String is a reference to an allocated sequence of 16-bit char values, and a length needs
to be specified when the object is allocated, not when the reference is declared. Further, as with the args
parameter to main, in an array of String values different elements may reference strings of different lengths.

The principal processing of the main method above occurs in the for loop. The initialization part declares and
initializes a loop-local int variable j. The test expression j < numArgs is evaluated before each iteration; if the
value is true then the statement comprising the loop body is executed, otherwise the loop terminates. The loop
epilog j++, which increments the value of j, is executed after each iteration.

The statement that is executed at each iteration is the method invocation

System.out.println(args[j]);

System is a class defined in the package java.lang, and out is a static field in this class. This field is of class
PrintStream, and println is an instance method for class PrintStream. Unlike a static method, an instance
method applies to a particular instance of a class, a reference to which is passed as an implicit parameter. The

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 6

println method takes a String parameter and returns void. Its effect is to send its parameter and a trailing end-
of-line to the standard output stream, which is typically associated with the user’s display.

The example also illustrates one of Java’s comment conventions, viz. “//” through the next end-of-line.

3 Object and Class
Ada and Java differ in three fundamental ways with respect to their support for Object-Oriented Programming
(OOP):

• The role of the class construct – combining a module with a data type, or providing separate features

• Whether pointers are implicit or explicit

• Whether garbage collection is automatic or not

Java’s class construct serves as both a module (with control over visibility) and a data type. Moreover, Java
lacks an explicit pointer facility but instead is “reference-based”: as seen earlier, declaring a variable of class α
reserves space only for a reference to an object. The reference, null by default, can designate an allocated
instance from class α or from any of its subclasses. Garbage collection is automatic.

Ada supplies separate features, the package and the tagged type, to satisfy the two purposes of a class. A Java
class is generally modeled by an Ada package whose specification immediately declares a tagged type. Since
Ada is a traditional stack-based language where references (access values) need to be explicit, an Ada package
declaring a tagged type T will generally declare an access-to-T'Class type. An implementation is permitted
but not required to supply automatic garbage collection, and thus the application programmer generally needs to
attend to storage reclamation through unchecked deallocation, storage pools, or controlled types.

The two languages have different vocabularies for their OO features. A Java class has members; a member is
either a field, a method, or another class†, and is either per-class or per-instance. Defining a member with an
explicit modifier static makes it per-class, otherwise the member is per-instance.

The two languages use the term “object” in different senses. A Java object is the allocated instance that is
referenced by a declared variable, whereas an Ada object is the declared variable itself. Unless otherwise
indicated, we will hereafter use the term “object” in the Java sense.

As implied by the terminology, if a member field is per-class then there is exactly one copy regardless of the
number of instances of the class. In contrast, there is a different copy of a per-instance field in each instance of
the class.

If a member method is per-class, then it is invoked with the syntax

classname.methodname(parameters)

and its only parameters are the ones it explicitly declares. If a method is per-instance, then it is invoked with the
syntax

ref.methodname(parameters)

and it takes ref as an implicit parameter named this which refers to the object for which the method is a
member.

Like C and C++, and unlike Ada, Java requires empty parentheses for an invocation of a parameterless method.
Java requires positional notation for parameters at method invocations; it does not support named associations.

† More strictly, a member may be a class or an interface. See §4.2 for a discussion of interfaces.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 7

The ability to declare a class within another class (and in fact also locally within a method) was introduced in
Java 1.1; in Java 1.0 a class could only be declared at the outermost level of a program.

An Ada tagged type has data components only, and these components are always per-instance. Java allows a per-
instance field to be declared final (meaning that it is a constant), whereas in Ada a record component other
than a discriminant is always a variable versus a constant.

A Java instance method takes an implicit parameter, this, which is an object reference. The corresponding Ada
construct is a primitive subprogram taking an explicit parameter of the tagged type; a parameter of a tagged type
is passed by reference. A Java static data member (“class variable”) or static method (“class method”) is
modeled in Ada by a variable or subprogram declared in the same package as the tagged type.

The languages’ different philosophies towards pointers lead to different tradeoffs. In Java, the implementation of
objects (including arrays) through implicit references, and the existence of automatic storage reclamation, offer
dynamic flexibility and notational succinctness, and free the programmer from the error-prone tasks of preventing
storage leaks and avoiding dangling references. However, these same properties prevent Java from being used by
itself as a systems programming language. There is no way in Java to define a type that directly models, say, a
data structure comprising an integer, a sequence of characters, and some bit flags, with each field at a particular
offset. Instead, one must define the data structure in another language and then resort to native methods to access
the components.

In Ada the choice of indirection is always explicit in the program. If the programmer declares a String, then
the semantic model is that storage for the array is reserved directly as part of the declaration; Ada does not allow
a variable declaration such as

Alpha : String;

since the compiler would not know how much space to reserve. The benefits are flexibility of style (since the
programmer, not the language, decides when indirection will be used), and run-time efficiency both in data space
and time. Ada’s discriminant facility allows the programmer to define a parameterized type with declaration-
time control over size (number of elements in a component that is an array) and shape (which of several variants
is present). Java has no such mechanism. The drawbacks to Ada’s approach are some notational overhead to
introduce the necessary declarations for the access types, run-time implementation complexity to deal with issues
such as functions returning values from “unconstrained” types, and the need for the programmer to take
appropriate measures to avoid storage leaks.

Java guarantees that each field in a class receives a default initialization based on its type: null for references,
false for boolean, and the type’s zero value otherwise. Default initial values are not assigned to methods’
local variables, and the compiler will reject a program if it cannot deduce that all local variables are set before
their values are referenced. Ada guarantees default initialization only for a variable from an access type (null),
for a record component with a default initialization expression, and for a variable from a controlled type (through
the Initialize procedure).

Both Java and Ada support abstract classes and abstract methods for such classes. The Ada terminology for
these concepts is abstract type and abstract operation. In both languages an abstract class with abstract methods
is to be completed when extended by a non-abstract class. As will be seen below (§4.3), an abstract class in Java
can be used to work around Java’s omission of a facility for passing methods as parameters.

3.2 Encapsulation and Visibility

3.2.1 Access Control

Both languages have mechanisms that enforce encapsulation; i.e., that control the access to declarations so that
only those parts of the program with a “need to know” may reference the declared entities. Java accomplishes
this with an access control modifier that accompanies a class or any of its members.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 8

• A class may be declared public, in which case its name is accessible anywhere that its containing package is
accessible. If a class is not specified as public, then it is accessible only from within the same package.

• A member is only accessible where its class is accessible, and an access control modifier may impose further
restrictions.

 A public member has the same accessibility as its containing class.

 A protected member is accessible to code in the same package, and also to subclasses.

 A private member is accessible only to code in the same class.

 If no access control modifier is supplied, then the effect is known as “package” accessibility: the member
is accessible only to code in the same package.

The location of a declaration in an Ada package (visible part, private part, body) models the accessibility of the
corresponding method or static field in Java (public, protected, and private, respectively). There is no
direct Ada analog to Java’s “package” accessibility. Moreover, modeling a Java class that contains a private per-
instance data member in Ada requires some circumlocution: a tagged private type with a component that is an
access value to an incomplete type whose full declaration is in the package body.

3.2.2 “Final” entities

Another aspect of Java’s encapsulation model is the ability to specify an entity as final, implying that its
properties are frozen at its declaration. If a per-instance method in a class is declared final, then each subclass
inherits the method’s implementation and is not allowed to override it. (The application of final to a static
method makes no sense semantically, since static methods are not inherited, but is permitted.) If a class itself is
declared final, then no subclasses are allowed. If a variable is declared final, then it is a constant after its
initialization.

The application of final to a method or class enables certain optimizations; for example, the invocation of a
final method can be compiled with static versus dynamic binding, since the called method is the same for each
class in the hierarchy.

Java’s notion of “final” is not really applicable in Ada’s semantic model, except for the concept of a final
variable, which directly corresponds to an Ada constant. Ada’s discriminant mechanism allows the value of a
constant field to be set when an object is created; Java’s “blank finals” (another feature introduced in Java 1.1)
offer similar functionality.

3.2.3 Separation of interface and implementation

Perhaps surprisingly, given the otherwise careful attention paid to encapsulation, Java does not separate a class
into a specification and a body. Rather, the method bodies occur physically within the class declaration, thus
revealing to the user of the class more information than is needed. If one wants to make available the source code
for a set of classes that reveals only the methods’ signatures (and not their implementation) than a tool is needed
to extract this from the compilable units.

Ada enforces a strict separation between a unit’s specification and its body; the “package specs” that comprise a
system’s interface are legitimate compilation units and do not contain algorithmic code. The latter forms the
implementation and is found in the package bodies. The price for the specification/body separation is some
additional complexity in language semantics and hence also for the compiler implementation. For example, Ada
is susceptible to “access before elaboration” problems, a sometimes subtle run-time error in which a subprogram
is invoked before its body has been elaborated. Java allows forward references to classes and methods and thus
the concept of “access before elaboration” does not arise. Sometimes the Java version of an Ada program
suffering from access before elaboration will work properly, but in other cases the Java program will throw a run-
time exception (for example, from a stack overflow caused by an infinite recursion, or from an attempt to
dereference a null reference variable during its initialization).

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 9

3.2.4 Parameter protection

Ada provides parameter modes (in, out, in out) that control whether the actual parameter may be updated by
the called subprogram. Thus the programmer knows by reading a subprogram’s specification whether the
parameters that it takes may be updated.

Java has no such mechanism: a method’s implementation has read/write access to the objects denoted by its
reference-type parameters. Thus in Java there is no way to tell from a method’s signature whether it updates
either the object denoted by its this parameter or the objects denoted by any other reference-type formal
parameters.

Java’s “call by value” semantics implies that a modification to a formal parameter of a primitive type has no
effect on the actual parameter. In order to update, say, an int, the programmer must either declare a class with
an int member or use an int array with one element. Both styles are clumsier and less efficient than Ada’s
approach with an out, in out, or access parameter.

3.2.5 Data abstraction and type differentiation

Ada’s private type facility supports the software engineering principle of data abstraction: the ability to define a
data type while exposing only the interface and hiding the representation. A variable of a private type is
represented directly, not through a reference, and its operations are bound statically. Data abstraction in Java is
part of the OO model, resulting in run-time costs for indirection, heap management, and dynamic binding.

A somewhat related facility is the ability to partition data into different types based on their operations, so that
mismatches are caught at compile time. Ada’s derived type and numeric type features satisfy these goals. Java
does not have an analogous mechanism for its primitive types.

3.3 Modularization

Java has two main mechanisms for modularization and namespace control: the package and the class. Ada does
not have a direct analog to the Java package; the way in which compilation unit names are made available to the
Ada compiler is implementation dependent. On the other hand, Java does not have a feature with the
functionality of Ada’s child units, a facility that allows a hierarchical namespace for compilation units. Inner
classes in Java need to be physically nested within a “top level” class and are analogous to nested packages, not
child packages, in Ada.

Inner classes, although a welcome addition in Java 1.1, do introduce some complexity that can lead to
programming errors. A typical mistake for a Java programmer is to reference a per-instance entity from the
implementation of a static method; inner classes provide further opportunities to make this kind of error. This
error is less likely in Ada, since the analog to a per-instance field is a component of a record type, which is
syntactically distinct from a variable in a package.

Java allows at most one public class per source file; if present, the public class must have the same name as the
file. Ada does not have analogous restrictions; a source file is not an Ada semantic construct.

3.4 Run-Time Type Interrogation

Java has comprehensive support for run-time processing of data types. The class java.lang.Class is the
class for classes; if K is a class, then K.class is the Class object that represents K. Java 1.1 has also
introduced a package java.lang.reflect which can be used to obtain information about a class and its
members. This is the basis for the Java Beans introspection mechanism.

Ada provides the 'Tag and 'External_Tag attributes to represent tagged types as run-time values, but for
more extensive support it is necessary to rely on auxiliary bindings and packages.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 10

3.5 Example

The following is a simple Java class and its Ada analog. Here as well as throughout this paper, we employ Java’s
lexical conventions for the Java examples, and Ada lexical conventions for the Ada examples.

public class Point {
 public int x, y;

 public static int numPts = 0;

 public boolean onDiagonal(){
 // Returns true if this is on 45° line
 return (x == y);
 }

 public static boolean onVertical(Point p,
 Point q){
 // Returns true if p and q are on a line
 // parallel to the y-axis
 return (p.x == q.x);
 }

 public void put(){
 // Displays x and y
 System.out.println("x = " + x);
 System.out.println("y = " + y);
 }
}

package Point_Pckg is
 type Point is tagged
 record
 X, Y : Integer;
 end record;
 Num_Pts : Integer := 0;

 type Point_Class_Ref is access all Point'Class;

 function On_Diagonal(This : Point)
 return Boolean;
 -- Returns true if This is on 45° line

 function On_Vertical(P, Q : Point'Class)
 return Boolean;
 -- Returns true if P and Q are on a line
 -- parallel to the y-axis

 procedure Put(This : in Point);
 -- Displays X and Y components
end Point_Pckg;

with Ada.Text_IO; use Ada.Text_IO;
package body Point_Pckg is
 function On_Diagonal(This : Point)
 return Boolean is
 begin
 return This.X = This.Y;
 end On_Diagonal;

 function On_Vertical(P, Q : Point'Class)

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 11

 return Boolean is
 begin
 return P.X = Q.X;
 end On_Vertical;

 procedure Put(This : in Point) is
 begin
 Put_Line("X = " & Integer'Image(This.X));
 Put_Line("Y = " & Integer'Image(This.Y));
 end Put;
end Point_Pckg;

Alternatively, in the Ada version we could declare On_Diagonal and/or Put with an access Point
parameter; this would allow dynamic binding based on passing an access value instead of a designated object.

The style of declaring all the fields public is not recommended; it is employed here to avoid introducing too
much complexity into an initial example. Below (§6.1) we will revise both the Java and Ada versions to take
better advantage of encapsulation.

The Ada version is longer than Java’s for several reasons. First, modeling one language’s constructs in another
almost always requires more code in the target language. If we were to compose an arbitrary Ada package, the
Java version would require additional verbiage for features that it does not directly support. Second, Ada’s
separation of a package into a specification and a body entails some (helpful) redundant syntax. Third, the use of
access values is explicit in Ada, requiring a type declaration. Fourth, Java’s C-based syntax is fairly terse (e.g.,
with “{“ and “}” delimiters) whereas Ada is more natural-language oriented, using “begin” and “end”.

A Java declaration

Point p = new Point();

corresponds to the Ada declaration

P : Point_Class_Ref := new Point;

Java thus uses the same name, Point, for both the reference (to an instance of either Point or any of its direct
or indirect subclasses) and an instance that is specifically a Point. Ada requires different types for the two
uses: Point_Class_Ref for the reference, and Point for the actual object.

More generally, Ada also allows declaring a Point data object directly, without going through a reference:

P_Obj : Point;

As observed earlier, Java has no analog to such a declaration: all objects in Java live on the heap and are
referenced indirectly.

Invoking a method in Java uses “dot” notation:

p.onDiagonal()

whereas the corresponding Ada construct is a subprogram call

On_Diagonal(P.all)

or, if we had declared On_Diagonal to take an access parameter, then

On_Diagonal(P)

In each of these cases the binding is dynamic, based on the type of the designated object. For the Java class
shown above there is no statically bound call equivalent to the Ada function invocation On_Diagonal(
P_Obj).

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 12

Field selection uses the same syntax in both languages – p.x – where the selection’s legality is based on the
declared type of the reference object p, regardless of the type of the designated object. In Ada, we can optionally
include an explicit “.all” – p.all.x – to indicate the dereference.

A Java static method such as onVertical, which takes a parameter of a class type (versus a primitive or array
type) corresponds to an Ada subprogram taking a parameter of a class-wide type. This issue will be addressed
further (§4.1) when we discuss inheritance in the two languages.

Separating the class construct into two features allows Ada to be somewhat more general than Java, in several
ways. Ada allows dynamic binding to be based on other than the first parameter to a primitive subprogram for a
tagged type, and in fact allows dynamic binding based on several parameters (provided that each is from the same
type). Moreover, Ada’s package mechanism is a full-fledged modularization facility. Using a Java class simply
as a module versus a data template is going somewhat against the grain of the language; for example, preventing
a class from being instantiated requires declaring a private constructor, a style that is somewhat clumsy.

4 Inheritance
Java supports class hierarchies based on single inheritance, and also simulates multiple inheritance through a
class-like mechanism known as an interface.

4.1 Simple Inheritance

In Java, inheritance is obtained by extending a class; for example:

public class ColoredPoint extends Point{
 protected int color;
 public void reverseColor(){
 color = -color;
 }
 public void put(){
 super.put();
 System.out.println("color = " + color);
 }
}

The extending class is said to be the subclass, and the class being extended is the superclass. Each non-private
instance method defined in the superclass is implicitly inherited by the subclass, with the superclass’s
implementation. The subclass may override with its own implementation any of these that the superclass did not
specify as final. Static methods are not inherited. ColoredPoint inherits onDiagonal() as is, overrides
the implementation of put(), and introduces a new method reverseColor().

The “super.member” notation is used within an instance method to reference fields or methods defined for the
immediate superclass. Thus the invocation super.put() calls the put() method for Point, which is
ColoredPoint’s superclass.

In Ada, inheritance is realized through type derivation.

with Point_Pkg; use Point_Pkg;
package Colored_Point_Pkg is
 type Colored_Point is new Point with private;

 type Colored_Point_Class_Ref is
 access all Colored_Point'Class;

 procedure Reverse_Color(This :
 in out Colored_Point);
 procedure Put(This : in Colored_Point);

private

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 13

 type Colored_Point is new Point with
 record
 Color : Integer;
 end record;
end Colored_Point_Pkg;

with Ada.Text_IO; use Ada.Text_IO;
package body Colored_Point_Pkg is
 procedure Reverse_Color(This :
 in out Colored_Point)is
 begin
 This.Color := -This.Color;
 end Reverse_Color;

 procedure Put(This : in Colored_Point) is
 begin
 Put(Point(This)); -- Invoke parent operation
 Put_Line ("Color = " &
 Integer'Image(This.Color)) ;
 end Put;
end Colored_Point_Pkg;

A protected per-instance member in Java (color in the above example) corresponds to a component of a private
tagged type in Ada.

In Java, code for a subclass of ColoredPoint automatically has access to the protected member color. In
Ada, the implementation of a descendant of Colored_Point has visibility to the Color component if the
new type is declared in a child package, but not if it occurs in a unit that simply with’s
Colored_Point_Pkg.

In Java, onVertical is a static method for Point and thus is not inherited. The corresponding Ada procedure
on_Vertical takes a class-wide parameter and thus likewise is not inherited.

If a Java class does not explicitly extend another class, then it implicitly extends the ultimate ancestral class
Object. The Object class allows the user to define “generic” container classes, heterogeneous arrays, and
similar constructs. For example:

Object[] arr;
arr = new Object[2];
arr[0] = new String("hello");
arr[1] = new Point();
String s = (String)(arr[0]);
Point p = (Point)(arr[1]);

The assignments to s and p require the casts on the right side; a run-time check guarantees that the types of the
array elements are correct.

Ada has no immediate analog to Java’s Object class, although the types Controlled and Limited_Controlled
in Ada.Finalization serve this role to some extent. This absence is not critical, since Ada’s generic facility
allows defining container data structures, and an access value designating a class-wide type offers heterogeneity.
On the other hand, the provision of a “root” class is convenient since a number of useful methods are defined
there, such as toString(). If a class overrides toString() then the resulting method is invoked implicitly
in certain contexts such as an operand to concatenation.

Java allows fields to have the same name in a class and in a subclass, a feature known as “shadowing”. Within
the subclass the forms super.fieldname and this.fieldname (or simply fieldname) resolve any
potential ambiguity. In contrast, Ada regards a data object of a tagged type as a single record, and a name in the

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 14

extension part is not allowed to duplicate a name of a field in the parent part. In this regard Java can claim to be
less sensitive than Ada to changes in a superclass: if a new field is added to a class, then the subclasses do not
need to be recompiled (see [GJS, §13.4.5]). A disadvantage to Java is that since the “super.” notation applies at
one level only, there is no direct way to access the fields in an ancestor of the superclass.

In Ada, modifying a tagged type by adding a new field F will cause a descendant type whose extension part has a
field named F to become illegal. It is possible to avoid this problem by introducing a “wrapper” record type that
is the sole component of the tagged type; the new field would be added to the wrapper type and would not clash
with a name in the extension part. The same principle would need to be applied in the declaration of the
extension part, to allow new fields to be added there without clashing with field names in further descendants.

Both Java and Ada allow a reference to be viewed as though it designates an object of a different type in the same
class hierarchy. In Java this is known as a cast, in Ada it is a view conversion to a class-wide type. The
semantics is roughly the same in both languages, with cast/conversion always allowed “towards the root”, and
also permitted “away from the root” but with a run-time check that the designated object is in the target class or
one of its subclasses. Unless the source type is either a (direct or indirect) ancestor or descendant of the target
type, the cast/conversion is illegal in both languages.

Testing if an object is in an inheritance hierarchy rooted at a particular type is realized in Ada through the
Boolean expression

X in T'Class

where X is an object of a tagged type, and T is a tagged type. The equivalent Java form, which delivers a
boolean value, is

x instanceof T

where x is a reference and T is a reference type. The expression returns true if the cast (T)x would succeed at
run time (that is, if x references an object that is either of type T or of one of its descendant types).

Ada allows querying whether an object of a class-wide type is of a specific tagged type, through the 'Tag
attribute.

X : Point'Class := ... ;
...
if X'Tag = Point'Tag then
 ...
elsif X'Tag = Colored_Point'Tag then
 ...
end if;

Java obtains this effect through the class field of a class object (introduced in Java 1.1) and the getClass()
method of the class Object, each of which delivers a value of class Class.

Point p = ...;
if (p.getClass() == Point.class)
 {...}
else if (p.getClass() == ColoredPoint.class)
 {...}

The following examples illustrate these semantic points.

class MyClass{
 void myFunc(){System.out.println("myFunc 1");}
 int myInt;
}
class MyOtherClass extends MyClass{
 void myFunc(){System.out.println("MyFunc 2");}

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 15

 void myOtherFunc(){
 Sytem.out.println{"myOtherFunc");
 }
 int myOtherInt;
}
class YourClass{
 void yourFunc(){ return; }
 int yourInt ;
}

class Test {
 public static void main(String [] args){
 MyClass ref1 = new MyOtherClass();
 MyOtherClass ref2 = new MyOtherClass();
 YourClass ref3 = new YourClass();

 ref1.myFunc(); // (1) myFunc 2
 refl.myOtherFunc() ; // (2) Illegal

 ((MyOtherClass)ref1).myOtherFunc(); // (3) OK
 ((MyClass)ref2).myFunc(); //(4) OK,myFunc 2
 ((MyClass ref3).myFunc(); // (5) Illegal cast

 if (ref1 instanceof MyOtherClass){ //(6)
 (MyOtherClass)ref1.myOtherFunc(); // OK
 }
 }
}

The statement at line (1) in main dynamically binds to the version of myFunc declared for MyOtherClass.
Line (2) is illegal since the method myOtherFunc is not defined for ref1’s class type. Line (3) is legal and
results in a run-time test that ref1 references an object from MyOtherClass or any of its subclasses. The
cast at line (4) is not needed, but in any event the call is bound dynamically to the version of myFunc found in
the class of the referenced object, versus the class indicated by the cast. Line (5) is illegal since YourClass
and MyClass are not related through an inheritance chain. The if statement at line (6) “downcasts” a reference
in order to invoke a method defined for a subclass but not for the superclass.

Here is a corresponding set of Ada package specifications and a main procedure:

package MyClass_Pkg is
 type MyClass is tagged
 record
 MyInt : Integer;
 end record:
 type MyClass_Ref is access all MyClass'Class;
 procedure MyFunc(This : in MyClass);
end MyClass_Pkg;

with MyClass_Pkg; use MyClass_Pkg;
package MyOtherClass_Pkg is
 type MyOtherClass is new MyClass with
 record
 MyOtherInt : Integer;
 end record;

 type MyOtherClass_Ref is
 access all MyOtherClass'Class;

 procedure MyFunc(This : in MyOtherClass);

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 16

 procedure MyOtherFunc(This : in MyOtherClass);
end MyClass_Pkg;

package YourClass_Pkg is
 type YourClass is tagged
 record
 YourInt : Ingeger;
 end record;

 type YourClass_Ref is
 access all YourClass'Class;

 procedure YourFunc(This : in YourClas);
end YourClass_Pkg;

with MyClass_Pkg, MyOtherClass_Pkg, YourClass_Pkg;
use MyClass_Pkg, MyOtherClass_Pkg, YourClass_Pkg;
procedure Main is
 Ref1 : MyClass_Ref := new MyOtherClass;
 Ref2 : MyOtherClass_Ref := new MyOtherClass;
 Ref3 : YourClass_Ref := new YourClass;
begin
 MyFunc(Ref1.all); --(1)
 MyOtherFunc(Ref1.all); --(2)
 MyOtherFunc(
 MyOtherClass'Class(Ref1.all)); --(3)
 MyFunc(MyClass'Class(Ref2.all)); --(4)
 MyFunc(MyClass'Class(Ref3.all)); --(5)

 if Ref1.all in MyOtherClass'Class then --(6)
 MyOtherFunc(MyOtherClass'Class(Ref1.all));
 end if;
end Main;

Line (1) dynamically binds to the version of MyFunc for MyOtherClass, since Ref1 designates an object of
this type. Line (2) is illegal since MyOtherFunc is not a primitive operation for MyClass. Line (3) is legal
with a run-time check to ensure that Ref1 designates an object of a type rooted at MyOtherClass. Line (4) is
legal, but the view conversion to MyClass'Class is not needed. Line (5) is illegal since there is no view
conversion defined between “sibling” types, The if statement at line (6) does an explicit test before attempting
the conversion “away from the root”.

In Java, selecting a member from a cast expression provides static binding using the reference type of the cast
when the member is a field, but dynamic binding using the type of the designated instance when the member is a
method. Strictly speaking, Ada has the same semantics (for a view conversion to a class-wide type), but the
syntactic difference between selecting a field (with “dot” selection) and invoking a subprogram on a parameter of
a class-wide type will likely prevent any confusion between static and dynamic binding. And in any event Ada
does not allow the same component name to be used in both a parent record and an extension part, so the issue of
static versus dynamic interpretation of field names does not arise.

A common OOP style is “passing the buck”: the implementation of a method for a subclass invokes the
overridden method from the superclass. In the ColoredPoint example at the beginning of this section, that
class’s implementation of put needs to invoke the put method for Point. The Ada style is to invoke the Put
procedure for Point on a view conversion of the ColoredPoint parameter to the specific parent type
Point. Java uses a special syntax, super.put(), for this effect, but it applies only to the immediate
superclass (that is, a reference super.super.put() form the implementation of put in a descendant of
ColoredPoint would be illegal).

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 17

4.2 Multiple Inheritance and Interfaces

Multiple inheritance – the ability to define a class that inherits from more than one ancestor – is a controversial
topic in OO language design. Although providing expressive power, it also complicates the language semantics
and the compiler implementation. C++ provides direct linguistic support (see [Wa93] and [Ca93] for arguments
pro and con), as does Eiffel; on the other hand, Smalltalk and Simula provide only single inheritance.

Java takes an intermediate position. Recognizing the problems associated with implementation inheritance, Java
allows a class to extend only one superclass. However, Java introduces a class-like construct known as an
interface and allows a class to inherit from – or, in Java parlance, implement – one or more interfaces. Thus a
user-defined class always extends exactly one superclass, either Object by default or else a class identified in an
extends clause, but it may implement an arbitrary number of interfaces.

Like a class, an interface is a reference type, and it is legal to declare a variable of an interface type. Like an
abstract class, an interface does not allow creation of instances. Interface inheritance hierarchies are permitted;
an interface may extend a parent interface. However, there are significant restrictions that distinguish an
interface from a class:

• Each method defined by an interface is implicitly abstract (that is, it lacks an implementation) and public

• An interface is not allowed to have any static methods

• Each variable in an interface is implicitly static and final (constant)

An interface thus has no implementation and no “state”. When a class implements an interface, it must provide a
“body” for each method declared in the interface. Some interfaces are general purpose, providing functionality
that can be added to any class. Other interfaces are more specialized, and are intended only for particular class
hierarchies.

Perhaps somewhat oddly at first glance, it is often useful to define empty interfaces (i.e. interfaces with no
members), known as “marker” interfaces. Examples of predefined marker interfaces are
java.lang.Cloneable (implemented by classes that support cloning) and java.io.Serializable
(implemented by classes that support “flattening” to an external representation). Whether a class implements a
given marker interface may be exploited by users of the class, assuming that implementing the interface affects
how the class implements some of its other methods.

The instanceof operator may be used to test whether an object is of a class that implements a particular
interface.

Here is an example of a simple interface:

interface Checkpointable{
 void save();
 // Construct and store copy of the object
 void restore();
 // Restore the value of the object from the
 // saved copy
}

A class can implement this interface in order to allow “checkpoint”ing the value for an object via a field that can
later be retrieved. This might be useful if the programmer wants to cancel some updates to the object and restore
the checkpointed value.

class CheckpointablePoint
 extends Point implements Checkpointable{

 protected Point p; // saved value

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 18

 public void save(){
 p = new Point();
 p.x = x;
 p.y = y;
 }

 public void restore(){
 x = p.x;
 y = p.y;
 }

 public static void main (String[] args) {
 Point q = new CheckpointablePoint();
 q.x = 10;
 q.y = 20;
 q.put(); // Displays 10 and 20
 ((Checkpointable)q).save();
 q.x = 100;
 q.y = 200;
 ((Checkpointable)q).restore();
 q.put(); // Displays 10 and 20
 }
}

This example illustrates the “mixin” style of multiple inheritance; the Checkpointable interface defines the
properties that need to be added to an arbitrary class.

Ada provides “mixin” multiple inheritance through a generic unit parameterized by a formal tagged type; the
“mixin” properties are added by deriving from the formal tagged type. Any operations needed to implement
these properties are supplied as additional generic formal parameters.

generic
 type T is tagged private;
 type T_Class_Ref is access all T'Class;
 with procedure Formal_Save (From : in T;
 To : out T);
 with procedure Formal_Restore (From : in T;
 To : out T);
package Generic_Checkpointable is
 type Checkpointable_T is new T with private;
 procedure Save(This : in out Checkpoitable_T);
 procedure Restore(This :
 in out Checkpointable_T);
private
 type Checkpointable_T is new T with
 record
 Ref : T_Class_Ref;
 end record;
end Generic_Checkpointable;

We could have expressed the generic to take a formal tagged type derived from Point, but this would be
unnecessarily restrictive. Since the Point operations do not need to be overridden to work for checkpointable
points, the formal type parameter can be expressed more generally as a formal tagged private type. Thus any
tagged type can be extended with checkpointable operations.

For simplicity we are ignoring the potential storage leakage caused by the implementation of Save, which
overwrites the Ref field. More realistically, we could either have an additional generic formal parameter for the
reclamation procedure, which would then be called by Save before overwriting This.Ref, or else declare the
formal type T as controlled.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 19

type T is
 new Ada.Finalization.Controlled with private;

To add the checkpointable operations to the Point tagged type from §3.4, we first need to implement the save
and restore operations for this type.

package Point_Pkg.Checkpointable is
 procedure Save(From : in Point;
 To : out Point);
 procedure Restore(From : in Point;
 To : out Point);
end Point_Pkg.Checkpointable;

The implementation of Save and Restore simply copy the fields from the source object to the target object.
We can instantiate the generic package to obtain a type that is in the inheritance hierarchy for Point and which
adds the required Save and Restore operations.

with Point_Pkg.Checkpointable,
 Generic_Checkpointable;
use Point_Pkg.Checkpointable;
package Checkpointable_Point_Pkg is
 new Generic_Checkpointable(
 Point_Pkg.Point,
 Point_Pkg.Point_Class_Ref
 Save, Restore);

Java’s interface mechanism for multiple inheritance has a number of advantages. Interface types are full-fledged
reference types and participate in dynamic binding. The notation is succinct but expressive, simpler than the Ada
version with generics. The Java predefined class library makes heavy use of interfaces, including the “marker”
interfaces mentioned above, which reflect clonability and serializability.

However, there are also some drawbacks. Sometimes an interface supplies methods that should only be called
from the body of the class that implements the interface, but since all methods in an interface are public there is
no way to enforce such encapsulation. In the Ada version these operations could be declared in the private part
of the generic package specification. Further, the restrictions on the contents of an interface are not necessarily
obvious (fields are always static, whereas methods are always per-instance). Moreover, a name clash anomaly
can arise with interfaces; as the next example shows, it is possible to construct two interfaces that cannot be
jointly implemented by the same class.

interface Interfacel{
 int func();
}
interface Interface2 {
 boolean func();
}

An attempt to define a class that implements both Interface1 and Interface2 will fail, since Java’s
overloading rules prohibit defining multiple methods with the same signature that are differentiated only by the
result type. Since interfaces will often be developed independently, this may turn out to be a significant problem
in practice. This is not an issue if the interfaces define methods with identical signatures including the result
type, since a class that implements both interfaces only supplies one method with the same name as in the
interfaces.

Interestingly, Java uses inheritance (from Object) to simulate generics, whereas Ada uses generics to simulate
multiple inheritance. The languages were opting to avoid semantic and implementation complexity, but at the
cost of some complexity for the user.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 20

4.3 Methods as Parameters

In Java, an abstract method may be used to model what in Ada would be realized through passing a subprogram
as a generic parameter or using an access-to-subprogram value as a run-time value. For example, here is a typical
usage of an access-to-subprogram type in Ada; given a function F(J) that takes an integer parameter and returns
an integer result, and a positive integer N, compute the sum F(1) + F(2) + ... F(N).

package Utilities is

 type Func_Ref is
 access function(J : Integer) return Integer;

 function Sum(F: Func_Ref; N : Positive)
 return Integer;
 -- Returns the sum of values F(J) for J in 1..N
end Utilities;

package body Utilities is
 function Sum(F: Func_Ref; N : Positive)
 return Integer is
 Subtotal : Integer := 0;
 begin
 for J in 1..N loop
 Subtotal := Subtotal + F.all(J);
 end loop;
 return Subtotal;
 end Sum;
end Utilitiies;

function Square(N : Integer) return Integer is
begin
 return N**2;
end Square;

with Square, Utilities, Ada.Text_IO;
use Utilities, Ada.Text_IO;
procedure Test is
 Result : Integer;
begin
 Result := Sum(Square'Access, 4) ;
 Put_Line(Integer'Image(Result)); -- 30
end Test;

One way to express this in Java is through inheritance from an abstract class:

abstract class Utilities{
 abstract int f(int j) ;

 public int sum(int n){
 int subtotal = 0;
 for (int j = 1; j <= n; j++){
 subtotal += f(j);
 }
 return subtotal;
 }
}

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 21

class SquareUtilities extends Utilities{
 static int square(int j){
 return j*j;
 }
 int f(int j){
 return square(j);
 }
 // sum is inherited automatically
 public static void main (String[] args){
 int result;
 result = new SquareUtilities().sum(4);
 System.out.println(result); // 30
 }
}

Although inheritance from an abstract class does simulate the effect of subprograms as parameters, the style has
more the flavor of a workaround than a solution. Ada’s approach is more direct, with the call of Sum identifying
the function that is to be used. The need to override an abstract method and use dynamic binding does not make
the intent especially clear.

Another approach is to model a method pointer by an object whose class has a method member with the required
signature.

interface FuncRef{
 int f(int j);
}

class Utilities{
 public int sum(FuncRef func, int n){
 int subtotal = 0;
 for (int j = 1; j <= n; j++){
 subtotal += func.f(j);
 }
 return subtotal;
 }
}

class Square implements FuncRef{
 public int f(int j){
 return j*j;
 }
}

class Test{
 public static void main (String[] args){
 int result;
 Square s = new Square();
 result = new Utilities().sum(s, 4);
 System.out.println(result); // 30
 }
}

This is perhaps clearer than the version with the abstract class, but still not as direct as the Ada approach with
access values designating subprograms.

5 Summary of Overloading, Polymorphism and Dynamic Binding
Java and Ada both allow overloading, but Ada is more general in allowing overloading for operator symbols and
also overloading of functions based on the result type. As noted earlier, the absence of overloading based on

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 22

function result type makes it possible to define Java interfaces that cannot be jointly implemented by the same
class.

Polymorphism, the ability of a variable to be in different classes of an inheritance hierarchy at different times, is
implicit in Java. If p is declared as a reference to class C, then p can designate an instance of either C or any of
its direct or indirect subclasses. In contrast, polymorphism is explicit in Ada, through a variable of an access-to-
class-wide type. In Java a variable of type Object is completely polymorphic, capable of designating an object
from any class. The closest Ada analog is a variable of an access type whose designated type is
Ada.Finalization.Controlled'Class, which can designated an object of any type derived from
Controlled.

Instance method invocation in Java is in general bound dynamically: in a call p.method(...) the version of
method that is invoked is the one defined by the class of the object that p designates. Static binding applies,
however, in several situations: an invocation super.method(...); an invocation of a final method; or an
invocation of a private method (from within the class defining the method). A static method is also bound
statically. Ada subprograms calls are in general bound statically: dynamically binding only occurs when the
actual parameter is of a(n) (access-to) class-wide type T'Class and the called subprogram is a primitive
operation for the tagged type T.

In Java there is an important (but perhaps subtle) difference in the semantics between an invocation of a method
on super versus on any other reference. If p is a reference to an object of class C, then the invocation
p.method(...) is dynamically bound based on the type of the designated object, but
super.method(...) is statically resolved to method(...) defined for C’s superclass. Perhaps
confusingly, this.method() is bound dynamically, in contrast to super.method(). The Ada view
conversion approach has more consistent semantics.

In Ada, an object X of a class-wide type T1'Class can be “view converted” to a specific tagged type T2 that is
either a descendant or ancestor of T1, with a run-time check that X is in T2'Class if T2 is a descendant of T1.
If the view conversion T2(X) is passed as an actual parameter to a primitive operation of T2, the binding is
static, not dynamic. Java lacks an equivalent facility for forcing static binding. Even if a reference x to a t1
object is cast to type t2, a method invocation ((t2)x).f() is dynamically bound to the method f() in t1,
not the version in t2. The Ada analog to a Java cast is thus a view conversion to a class-wide type, not to a
specific type.

In Ada it is possible to obtain dynamic binding through access values designating aliased class-wide variables
rather than allocated objects; this avoids the overhead of heap management. Java has no such mechanism: all
objects go on the heap.

6 User-Controlled Basic Behavior
A number of operations dictate the fundamental behavior for instances of a data type: construction/initialization,
cloning/assignment, finalization, and the test for equality. Both Java and Ada allow the author of the type to
specify these operations’ availability and implementation, though with some stylistic and semantic differences.

6.1 Construction/Initialization

A Java class may include one or more constructors; a constructor is a method with special syntax and semantics
that is called during object allocation. Here is a revised version of the Point class shown earlier, with two
constructors to arrange initialization, and with protected versus public fields for encapsulation:

public class Point{
 protected int x, y;
 protected static int numPts = 0;

 public Point(int x, int y) {
 this.x = x;

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 23

 this.y = y;
 numPts++;
 }
 public Point(){ this(0, 0); }

 public boolean onDiagonal (){
 return (x == y);
 }
 public void put(){
 System.out.println ("x = " + x) ;
 System.out.println ("y = " + y) ;
 }
}

A constructor has the same name as the class and lacks a return type (and hence does not need a return
statement). Java’s overloading rules allow the declaration of multiple constructors; this is a common style. A
constructor is invoked as an effect of an object allocation, for example

Point p1 = new Point(10, 20);
 // Now p1.x is 10, p1.y is 20, and
 // numPts is 1
Point p2 = new Point();
 // Now p2.x and p2.y are both 0, and
 // numPts is 2

A constructor is called after the object’s instance variables have been set to their default values and after any
explicit initializers have been executed. In the above example, the assignment to p1 allocates a Point object
and invokes the two-parameter constructor that sets p1’s x and y fields and increments numPts.

The assignment to p2 invokes a parameterless constructor (colloquially known in Java as a “no-arg” constructor),
which calls the other constructor to initialize the object’s fields to zero and to increment numPts.

An explicit constructor invocation is only permitted as the first statement of another constructor; the invocation
will either specify this (for a constructor in the same class) or super (for a constructor in the superclass). If
the first statement of a constructor is not an explicit invocation of another constructor, then an implicit call of
super() is inserted.

Since Java’s accessibility control is orthogonal to its constructor facility, the ability to allocate objects can be
encapsulated. At the extreme, if a constructor is declared private then explicit object allocation is allowed
only within the class’s implementation.

Ada has no immediate analog to Java constructors, but simulates their effect through controlled types. An
explicit Initialize procedure coupled with providing default expressions to initialize components is the Ada
analog to a Java no-arg constructor, and discriminants can sometimes be used to model Java constructors taking
arguments. In some situations a Java constructor may be modeled simply with an Ada function that delivers a
value of the type in question.

with Ada.Finalization; use Ada.Finalization;
package Point_Pkg is
 type Point(Init_X, Init_Y : Integer := 0)
 is new Controlled with private;

 type Point_Class_Ref is access all Point'Class;

 procedure Initialize(Obj : in out Point) ;
 function On_Diagonal(This : Point)
 return Boolean;
 procedure Put(This : in Point);

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 24

private
 Num_Pts : Integer := 0;
 type Point(Init_X, Init_Y : Integer := 0)
 is new Controlled with
 record
 X : Integer := Init_X,;
 Y : Integer := Init_Y;
 end record;
end Point_Pkg;

with Ada.Text_IO; use Ada.Text_IO;
package body Point_Pkg is
 procedure Initialize(Obj : in out Point) is
 begin
 Num_Pts := Num_Pts + 1;
 end Initialize

 function On_Diagonal(This : Point)
 return Boolean is
 begin
 return This.X = This.Y;
 end On_Diagonal;

 procedure Put(This : in Point) is
 begin
 Put_Line("X = " & Integer'Image(This.X)) ;
 Put_Line("Y = " & Integer'Image(This.Y)) ;
 end Put;
end Point_Pkg;

Here is an example of its usage:

P1 : Point_Class_Ref := new Point(10,20);
-- Now P1.X is 10, P1.Y is 20,
-- and Num_Pts is 1
P2 : Point_Class_Ref := new Point;
-- Now P2.X and P2.Y are both 0, and
-- Num_Pts is 2

6.2 Finalization

The root class java.lang.Object supplies a protected method finalize() that can be overridden to do
any resource cleanup required before the object is garbage collected. For example, if an object contains fields
that reference open files, then it is generally desirable to close the files when the object is reclaimed, versus
waiting until program termination.

As a matter of style, the first statement in a finalize method should be the invocation

super.finalize();

to ensure performing any finalization required for the superclass.

Finalization in Ada differs somewhat from Java both stylistically and semantically. Since Ada does not
guarantee garbage collection, finalization is generally used in Ada to obtain type-specific storage management
such as reference counts. In Java there is no need for finalize to do storage reclamation. Semantically,
Finalize is called in Ada not only when a controlled object is deallocated but also when it goes out of scope
or is the target of an assignment. Moreover, since the Java language does not define when garbage collection
occurs, a programmer cannot predict exactly when finalize will be called, or the order in which finalizers are
executed. In fact, the JVM may exit without garbage collecting all outstanding objects, implying that some
finalizers might never be invoked.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 25

A Java object is not necessarily freed immediately after being finalized, since the finalize method may have
stored its this parameter in an outer variable, thus “resurrecting” it [F197, p. 62]. Nonetheless finalize()
is invoked only once. In Ada it is possible under some circumstances for the Finalize procedure to be
invoked more than once on the same object; the programmer can attend to such a possibility by storing a
Boolean component in the controlled object that keeps track of whether finalization has already occurred.

In Java, an exception thrown by finalize() is lost (i.e., not propagated), despite the fact that the signature for
finalize in class Object has a “throws” clause. In Ada it is a bounded error for a Finalize procedure
to propagate an exception.

6.3 Control over cloning/assignment and equality

Ada has the concept of a limited type; viz., one for which assignment is unavailable and the “=” and “/=”
operations are not provided by default. In Java the assignment and equality operations copy and compare
references, not objects, and are available for all classes. However, Java recognized that the concepts of copying
(or “cloning”) an object, or comparing two object for logical equivalence are class specific and thus need to be
definable by a class author.

Java’s object cloning mechanism was designed to satisfy two goals:

• Allow the class author to decide whether any given class should support cloning

• Provide a simple default (“shallow copying”) for those classes that support cloning, overridable where more
sophisticated processing is required.

Java provides two features to satisfy these goals. The “marker” interface Cloneable needs to be implemented
by any class for which cloning is to be supported. The protected method clone in class Object checks that
the Cloneable interface is implemented (otherwise throwing a CloneNotSupported-Exception),
allocates a new object that is a byte-by-byte copy of the this object, and returns a reference to the new object.
The clone method is implicitly inherited, though as a protected method is it not directly invokable by clients of
the subclass.

The object equivalence method, in class Object, has the following signature:

public boolean equals(Object obj);

Its default implentation returns true if the object denoted by this and by obj are equal based on a “shallow”
byte-by-byte comparison, and returns false otherwise.

A limited type is the Ada analog to a Java class that does not implement Cloneable. Attempting assignment
for objects of a limited type is detected at compile time in Ada; invoking the clone method for a class that does
not implement the Cloneable interface throws a run-time exception in Java.

A controlled type is the Ada analog to a Java class that implements Cloneable and overrides clone. In Ada
the programmer would need to define type-specific Finalize and Adjust procedures. The fact that
assignment in Ada for a controlled type invokes both Finalize and Adjust makes Ada somewhat more
flexible than Java. In Java a statement

p1 = p2.clone();

does not invoke p1.finalize(). If p1 designated an object with resources that needed cleaning up with a
finalizer, then this cleanup would be deferred until p1 was garbage collected. The analogous Ada construct is an
assignment statement, and Finalize is guaranteed to be invoked on the target as part of the effect of the
assignment.

Corresponding to the Java equals method is the Ada “=” operation. In both languages the programmer can
override the default implementation to reflect logical equivalence.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 26

7 Exception Handling
Java and Ada share a similar attitude about exception handling but realize their support through somewhat
different mechanisms. In Java, exceptions are defined through the language’s Object Oriented features. An
occurrence of an exception is an allocated object of some class that inherits from the class java.lang.-
Throwable, or, more typically, from its subclass Exception. An exception object is thrown either implicitly
from the compiled code (for example, an attempt to dereference null) or explicitly by a throw statement. It is
then either caught by a local handler (in a catch clause following a try block) or else propagated up the
dynamic call chain.

Since the user may introduce new fields when declaring an exception class, a constructor may be defined to
initialize these fields appropriately when an object of this class is allocated. These fields may be retrieved by the
code that catches the exception.

Java distinguishes between unchecked and checked exceptions†. The unchecked exceptions comprise the classes
Error and RuntimeException and their subclasses. They reflect the exceptions that result from internal
failures (for example, a JVM bug) and those that correspond to some of the violations of dynamic semantics (for
example an array index out of bounds). All other exceptions are checked.

A Java method must explicitly specify, in a throws clause that is part of its signature, any checked exceptions
that it throws but does not catch locally. If it lacks a throws clause, then it must catch all checked exceptions
thrown by itself or propagated by the methods that it invokes. When a method is overridden by a subclass, the
new version’s throws clause is not allowed to specify any exceptions outside the classes of exceptions given by
the overridden method’s throws clause.

Java’s model is more general than Ada’s, but Ada is more efficient for several reasons:

• There is no need for dynamic allocation in Ada in connection with raising exceptions.

• The number of kinds of exceptions in Ada is statically known. Since Java allows per-instance classes, and
classes local to a recursive method, the number of exception classes is dynamic in Java.

During the original Ada development, the design team looked at the possibility of requiring subprograms to
specify the exceptions that they propagate. They eventually rejected this approach for pragmatic reasons,
concluding that the programmer would too often just specify that a subprogram could raise any exception,
information that just adds clutter to the code without improving readability. Java has taken a compromise view,
requiring that uncaught checked exceptions be specified in a throws clause but not requiring this for unchecked
exceptions.

Here is an example of exception handling in Ada:

package My_Pack is

 procedure My_Proc(N : in Integer);
 -- May raise My_Error

 exception My_Error;

end My_Pack;

† The terminology is possibly misleading. “Checked” and “unchecked” do not refer to compiler-generated checks
for exception conditions at run time, but rather to the compiler’s checking whether a method specifies in a
throws clause the classes of exceptions that it can propagate.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 27

with Ada.Exceptions; use Ada.Exceptions;
package body My_Pack is
 procedure My_Proc(N : in Integer) is
 begin
 if N<0 then
 Raise_Exception(
 My_Error'Identity,
 Integer'Image(N));

 end if;
 end My_Proc;
end My_Pack;

with My_Pack, Ada.Exceptions, Ada.Text_IO;
use My_Pack, Ada.Exceptions, Ada.Text_IO;
procedure My_Main is
begin
 My_Proc(-1);
exception
 when E : My_Error =>
 Put_Line(Exception_Message(E));
end My_Main;

A corresponding Java version is as follows:

class MyClass(
 static class MyError extends Exception(
 MyError(String s) {
 super(s);
 }
 }
 static void myProc(int n) throws MyError{
 if (n < 0) {
 throw new MyEror(String.valueOf(n));
 }
 }
 public static void main (String[] args) {
 try{
 myProc(-1);
 }
 catch (MyError e){
 System.out.println(e.getMessage());
 // displays "-1"
 }
 }
}

The predefined class java.lang.Exception provides a constructor that takes a String parameter, and a
method getMessage that retrieves the String that was passed to this constructor. Since constructors are not
inherited, the constructor for MyError needs to be explicitly supplied.

8 Thread Support
Ada and Java are unusual in providing direct linguistic support for concurrent programming. In Ada the task is
the unit of potential concurrency, and tasks may communicate and synchronize directly (through rendezvous),
through operations on protected objects, or through accesses to shared data objects specified as atomic. The
tasking model is orthogonal to the language’s OOP support.

In Java, the support for concurrency is defined in terms of the OO features. The package java.lang supplies a
class, Thread, whose objects embody potentially concurrent executing entities, and also an interface,

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 28

Runnable. A principal method in the Thread class is run, which is the code actually executed after a
Thread object’s start method is called. The Thread class also contains a number of methods relevant to
thread synchronization.

One way to obtain multi-threading is to extend the Thread class and override the run method to carry out the
necessary processing. The program needs first to invoke a constructor for the given Thread subclass (which
allocates the resources, such as a run-time stack, necessary to support the thread’s execution), and then to call the
object’s start method. The start method calls run, which may be either an infinite loop or a bounded
sequence of statements.

However, Java’s single inheritance model precludes subclassing Thread if the new class also needs to extend
some other class. The solution is to implement the Runnable interface. This interface supplies one method,
run, which needs to be overridden. The program can call a Thread constructor passing as a parameter the
object of the class that has implemented Runnable. Invoking this thread’s start method will cause its run
method to be called.

Mutual exclusion may be achieved in several ways. A low-level mechanism is to specify the modifier
volatile on a field that is being accessed by different threads. The effect is similar to Ada’s pragma
Atomic, inhibiting optimizations and thus ensuring that each access to the field is to its current value, and also
requiring indivisibility with respect to thread scheduling.

A second mechanism is the synchronized statement (effectively a conditional critical region) which “locks”
an object that the executing thread may then access. This statement is not generally recommended, since it
distributes the thread-sensitive code across the program versus centralizing it in the implementation of the
affected classes.

The preferred mechanism is to encapsulate shared data in an object of a class whose methods are specified as
synchronized. Associated with each object is a conceptual lock that is held by the thread currently executing
one of the object’s synchronized methods. Analogously there is a lock for the class itself, for any static
fields. If a thread θ attempts to call a synchronized method for an object (or class) that is locked by another
thread, θ is suspended. When a lock is released at the conclusion of a synchronized method, some thread
suspended on the lock is awakened and given the lock (as an atomic action). Whether priorities affect which
thread is awakened depends on the underlying operating system.

If a synchronized method needs to wait for a boolean condition, then the Java idiom is

while (!condition) wait();

and, in the other direction, if a synchronized method takes an action that may set one of the conditions to true,
then it should invoke the notify method to awaken one thread waiting for the condition, or notifyAll to
awaken all threads waiting for the condition.

Java’s exception semantics partially avoids an anomaly that arises in the Ada tasking model. In Ada an exception
raised in a task body’s statements but not handled is not propagated; rather, the task simply becomes completed,
with no notification to the rest of the program. This situation does not arise in Java for checked exceptions, since
the run method (both in the Thread class and in the Runnable interface) lacks a throws clause. Thus any
overriding version of run is required to catch all checked exceptions; it is a compile-time error if an
implementation of run does not catch all checked exceptions thrown by itself or by the methods that it invokes.
However, unchecked exceptions such as one resulting from a null dereference need not be caught, and a Java
thread whose run method throws such an exception will terminate silently.

Exceptions are always synchronous in Ada. In Java an asynchronous exception is thrown when the stop
method of a thread is invoked; the affected thread then completes abnormally. The closest analog in Ada is an
asynchronous select statement.

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 29

Here is an Ada example for a bounded buffer, containing Integer elements, which is used by producers and
consumers. A producer task is blocked when the buffer is full, and a consumer task if blocked when the buffer is
empty.

package Buffer_Pkg is
 type Integer_Array is
 array (Positive range <>) of Integer;
 protected type Buffer(Max : Natural) is
 entry Put(Item : in Integer) ;
 entry Get(Item : out Integer);
 private
 Data : Element_Array(1..Max);
 Next_in, Next_Out : Integer := 1;
 Count : Natural := 0;
 end Buffer;
end Buffer_Pkg;

package body Buffer_Pkg is
 protected body Buffer is
 entry Put(Item : in Integer)
 when Count < Max is
 begin
 Data(Next_In) := Item;
 Next_In := (Next_In mod Max)+1;
 Count := Count+1;
 end Put;

 entry Get(Item: out Integer)
 when Count > 0 is
 begin
 Item := Data(Next_Out);
 Next_Out := (Next_Out mod Max)+1;
 Count := Count-1;
 end Get;
 end Buffer;
end Buffer_Pkg;

with Buffer_Pkg; use Buffer_Pkg;
procedure Producer_Consumer is
 Buff : Buffer(20) ;

 task Producer;
 task body Producer is
 begin
 for J in 1..100 loop
 delay 0.5;
 Buff.Put(J);
 end loop;
 end Producer;

 task Consumer;
 task body Consumer is
 K : Integer;
 begin
 for J in 1..100 loop
 Buff.Get(K);
 delay 1.0;
 end loop;
 end Consumer;

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 30

begin
 null; -- wait for tasks to terminate
end Producer_Consumer;

A Java version is as follows, illustrating both a Thread subclass and a Runnable implementation. Recall that
protected has quite different meanings in Ada and Java.

class Buffer{
 protected final int max;
 protected final Object[] data;
 protected int nextIn=0, nextOut=0, count=0;

 public Buffer(int max){
 this.max = max;
 this.data = new Object[max];
 }
 public synchronized void put(Object item)
 throws InterruptedException{
 while (count == max) { wait(); }
 data[nextIn] = item;
 nextIn = (nextIn+1) % max;
 count++;
 notify(); //a waiting consumer, if any
 }

 public synchronized Object get()
 throws InterruptedException{
 while (count == 0) { wait(); }
 Object result = data[nextOut];
 nextOut = (nextOut+1) % max;
 count--;
 notify(); // a waiting producer, if any
 return result;
 }
}
class Producer implements Runnable{
 protected final Buffer buffer;
 Producer(Buffer buffer){
 this.buffer=buffer;
 }

 public void run() {
 try{
 for (int j=1; j<=100; j++){
 Thread.sleep(500);
 buffer.put(new Integer(j));
 }
 }catch (InterruptedException e)
 {return;}
 }
}
class Consumer extends Thread{
 protected final Buffer buffer;
 public Consumer(Buffer buffer){
 this.buffer = buffer;
 }
 public void run(){
 try {
 for (int j=1; j<=100; j++){
 Integer p = (Integer)(buffer.get());
 int k = p.intValue();

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 31

 Thread.sleep(1000);
 }
 } catch (InterruptedException e)
 {return;}
 }
}
public class ProducerConsumer{
 static Buffer buffer = new Buffer(20);
 public static void main(String[] args){
 Producer p = new Producer(buffer);
 Thread pt = new Thread(p);
 Consumer c = new Consumer(buffer);
 pt.start();
 c.start();
 }
}

The put and get methods each include a throws clause specifying InterruptedException, since the
wait method in class Thread includes such a clause and put and get do not catch exceptions from this class.
However, the implementation of each run method needs to catch InterruptedException: get and put
can propagate exceptions from this class, and the run method, lacking a throws clause, must catch any
exceptions propagated from methods that it invokes. It would not have been possible to simply put a throws
InterruptedException clause on the implementation of the run method, since the signature of this
method in the superclass Thread and in the interface Runnable lacks a throws clause. As noted earlier, a
method is not allowed to throw more kinds of exceptions than are specified in the throws clause of the version
of the method that it is overriding.

Java’s use of the OOP features for threads offers some advantages. For example, it is simple to define an array of
Thread objects, thus allowing common operations to be performed on them independent of their specific
behavior. In Ada the task type mechanism only partially satisfies this need; in general, one must declare an array
of Task_Id values and associate such values with individual tasks. Moreover, it is convenient to have a class
that both captures the requirements for concurrency and participates in an inheritance hierarchy. In Ada the
concurrency (for objects of a tagged type) would need to be modeled by components that are tasks or protected
objects. (However, there is an interaction between OOP and synchronization, known as the “Inheritance
Anomaly”, that interferes with combining the two in a seamless manner. A discussion of this issue and how it
applies to Java and Ada, is found in [Br98].)

Ada’s rendezvous model offers a higher-level approach to task communication than Java’s wait/notify
mechanism, and Ada’s protected object feature is somewhat more expressive, and potentially more efficient, than
the corresponding Java facility with synchronized methods. Ada distinguishes protected entries from protected
subprograms, thus making it explicit when queue management (versus just object locking) is needed, and also
allowing concurrent reads of protected functions. In Java there is nothing syntactically different about a
synchronized method that might block versus one that doesn’t, preventing some optimizations. In Ada, if the
implementation provides different queues for different protected entries, then the evaluation of some of the
barrier conditions might not be necessary. In Java the condition tests that are triggered by a notify or notifyAll
invocation are in normal user code versus being syntactically distinguished as barriers, and are not optimizable.
Moreover, the need for an explicit loop on the condition test, and a corresponding explicit invocation of notify
or notifyAll, are potentially error prone. In Ada the entry barrier explicitly shows the condition being tested,
and the notification of waiting tasks is automatic at the end of a protected procedure or entry.

9 Integration of OO Features into the Language
In Java the OO features are the language’s essence. Arrays, strings, exceptions, threads, and the predefined class
library heavily exploit the OO model; indeed, classes are themselves objects (of the class Class) and may be

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 32

manipulated as run-time values. The only major facility that does not depend on object orientation is the set of
primitive types (char, int, and so on), but even here the “wrapper” classes Character, Integer, etc.,
allow an OO view. Java’s designers omitted traditional data structuring facilities such as record/structure types
and variant record/union types since these features could be simulated by classes and inheritance. An effect of
the OO-centric design is that one needs to be explicit in order to avoid using Java’s OO features: for example, by
declaring a class or method final (thus preventing the class from being extended or the method from being
overridden), or by declaring a class all of whose members are static.

Java lacks generic units (templates), but uses Object Orientation, in particular the root class Object from which
all classes implicitly inherit, to simulate some of the applications of generics. For example, an Ada generic
linked list package can be modeled by a Java linked list class whose element type is object. However,
simulating generics through the class Object sacrfices compile-time checking, introduces run-time overhead (for
checking casts), and prevents constraining the elements of a “container” data structure to be all of one type.

Java lacks an ability to use a method as a run-time value; again, this effect is simulated through OOP.

Ada, on the other hand, provides a clear separation between the OO features and the rest of the language, and one
needs to be explicit in order to use OOP. In the predefined environment, OOP is exploited where relevant, for
example in Ada.Streams, but most of the packages are defined more simply using private (non-tagged) types
or other software engineering features. A software developer using Ada has an assortment of facilities to draw
from (including private types, generic units, tasking, access-to-subprogram types, and OOP) and can choose those
that are of relevance to the problem.

10 Conclusions
Both Ada and Java are bona fide Object-Oriented languages. Java treats object orientation as its central mission;
this brings a number of advantages (consistent integration of features, safe automatic storage reclamation,
dynamic flexibility in data structures) but also a few drawbacks (run-time overhead due to implicit heap usage
and management, absence of several fundamental data structuring facilities, occasional awkwardness in applying
an OO style to a problem whose essence is process/function-related). Ada treats object orientation as one
methodology, but not necessarily the only one, that might be appropriate for a software developer, and hence its
OO support complements and supplements a more traditional set of stack-based “third-generation language”
features. For example, in many situations data encapsulation (Ada private types) will be sufficient; the full
generality of OOP is not needed.

Ada’s advantages include run-time efficiency - a program only incurs heap management costs if it explicitly uses
language features involving dynamic allocation – design method neutrality, and standardization. On the other
hand, the need for explicit access types in Ada introduces notational overhead compared with Java, and if the
implementation does not provide garbage collection then an Ada developer will need to employ controlled types
or an equivalent mechanism to avoid storage leaks.

In any event the choice of Ada or Java is not necessarily “either/or”. Support for interfacing with Java and
generating Java bytecodes from an Ada source program is presently provided by Aonix [Ao97] using
Intermetrics’ AdaMagic technology; mixed-language systems with Ada and Java allow the software developer to
exploit the benefits of both languages.

The accompanying table summarizes the OO-related features of the two languages.

Feature Java Ada

Class Combines module and data
template

Separated into two features, package and tagged type

Pointers Implicit Explicit (access values)

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 33

Storage
reclamation

Garbage collection provided
by implementation

Implementation –provided garbage collection,
controlled type or storage pool defined by class
author, or unchecked deallocation by application
programmer

Method
invocation
syntax

obj.func() func(obj)

Inheritable
operation

Non-private, non-final per-
instance method in a class

Primitive subprogram for a tagged type

Single
inheritance

A class that extends a
superclass

A type that is derived from a tagged type

Multiple
inheritance

A class that extends one
superclass and implements
one or more interfaces

A generic package with a formal tagged type,
extended in the specification

Polymorphism Implicit for any variable of
a class or interface type

Explicit through an access type whose designated type
is class-wide

Method binding Dynamic except for
methods that are static,
final, private, or from super

Static except for parameter of class-wide type passed
to primitive operation

Control over
fundamental
operations

Constructors, finalize,
clone, equals

Controlled types-Initialize, Finalize, Adjust

Encapsulation Access modifier for class
member

Placement of entity declaration in a package (visible
part, private part, body); child unit

Generic
template

Simulated by a component
with class Object

General-purpose mechanism for compile-time
parameterization

Namespace
control

Packages, inner classes Packages, child units, nested packages

References
[AG98] K. Arnold, J. Gosling: The Java™ Programming Language (2nd edition), Addison-Wesley, 1998.

[AI85] ANSI/IEEE IEEE Standard for Binary Floating-Point Arithmetic; ANSI/IEE Std. 754-1985; 1985.

[Ao97] Aonix; “ObjectAda Integrated Development Environment”, v 7.1; 1997.

[Ar96] K. Arnold; The Java Programming Language, Professional Development Seminar delivered to Boston
ACM Chapter, October 1996

[Br98] B. Brosgol; A Comparison of the Concurrency Features of Ada 95 and Java”, Proc. SIGAda ’98; ACM
SIGAda; 1998.

[Ca93] T.A. Cargill, “The Case Against Multiple Inheritance in C++”, in The Evolution of C++ (J. Waldo, ed.),
pp. 101-110, The MIT Press, 1993.

[FI97] D. Flanagan; Java in a Nutshell (2nd edition), O’Reilly & Associates, 1997.

[GJS96] J. Gosling, B. Joy, G. Steele; The JavaTM Language Specification; Addison Wesley, 1996

A Comparison of the Object-Oriented Features of Ada 95 and Java Page 34

[In95] Intermetrics, Inc.; Ada Reference Manual – Language and Standard Libraries, ISO/IEC 8652;1995

[Jø93] J. Jørgensen; “A Comparison of the Object Oriented Features of Ada 9X and C++”, in Ada Europe ’93
Conference Proceedings; Paris, France; June 1993.

[Su96] Sun; “The Java TM Language; and Overview”, document available on-line at
http:\\java.sun.com/docs/overview/java/java-overview-1.html

 [Ta96] S.T. Taft; “Programming the Internet in Ada 95”, in Ada Europe ’96 Conference Proceedings; Montreux,
Switzerland; June 1996.

[Un96] Unicode Consortium; The Unicode Standard: Worlwide Character Encoding, Version 2.0; Addison-
Wesley, 1996, ISBN 0-201-48345-9

[Wa93] J. Waldo, “The Case For Multiple Inheritance in C++”, in The Evolution of C++ (J. Waldo, ed.),
pp. 111-120, The MIT Press, 1993.

	Abstract
	1 Introduction
	2 Java Summary
	2.1 Java Technology Elements
	2.2 Language Overview
	2.2.1 General-purpose features
	2.2.2 Execution model and multi-threading
	2.2.3 “Programming in the large”

	2.3 Java Application Example

	3 Object and Class
	3.2 Encapsulation and Visibility
	3.2.1 Access Control
	3.2.2 “Final” entities
	3.2.3 Separation of interface and implementation
	3.2.4 Parameter protection
	3.2.5 Data abstraction and type differentiation

	3.3 Modularization
	3.4 Run-Time Type Interrogation
	3.5 Example

	4 Inheritance
	4.1 Simple Inheritance
	4.2 Multiple Inheritance and Interfaces
	4.3 Methods as Parameters

	5 Summary of Overloading, Polymorphism and Dynamic Binding
	6 User-Controlled Basic Behavior
	6.1 Construction/Initialization
	6.2 Finalization
	6.3 Control over cloning/assignment and equality

	7 Exception Handling
	8 Thread Support
	9 Integration of OO Features into the Language
	10 Conclusions
	References

